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Abstract—Chiral 4,5-bis(2-oxazolinyl)-(2,7-di-tert-butyl-9,9-dimethyl)-9H-xanthenes (xabox) were synthesized and the chiral envi-
ronments were evaluated in catalytic asymmetric 1,3-dipolar cycloaddition reactions of nitrones resulting in good to excellent
enantioselectivities. 1,3-Dipolar cycloaddition reactions of nitrones with 3-crotonoyl-2-oxazolidinone in the presence of a bis(2-
oxazolinyl)xanthene (4c; xabox-Bn) and Mn(II) or Mg(II) complex as a chiral Lewis acid catalyst proceeded smoothly to give the
corresponding cycloadducts ranging from 96:4 to >99:1 of endo:exo ratio and ranging from 91% to 98% ee for the endo adduct.
� 2004 Elsevier Ltd. All rights reserved.
In order to develop a powerful synthetic alternative
methodology to enzymatic synthesis, much attention has
been paid to the design and synthesis of chiral ligands of
optically active organic molecules.1 Bis- and tridentate
oxazoline-derived C2-symmetry chiral ligands have
played an important role in the field of asymmetric
induction since these are easily accessible from amino
alcohols and carboxylic acids.2;3 During the course of
our studies on the design of oxazoline-derived chiral
ligands, we became interested in a C2-symmetric helical
chiral ligand based on the C2-symmetry to increase the
rigidity of the chiral environment.4 Here, a series of new
tridentate oxazoline-derived chiral ligands having a
xanthene backbone was synthesized, and the chiral
environment after the complexation with metals may be
constructed as a helical structure. These new ligands
were investigated and evaluated in catalytic asymmetric
1,3-dipolar cycloaddition (D.C.) reactions of nitrones
with 3-crotonoyl-2-oxazolidinone.5;6
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The oxazoline-derived xanthene ligands were synthe-
sized from the corresponding carboxylic acid in four
steps to give 70–80% yields (Scheme 1). The reaction of
xanthene-2,6-dicarboxylic acid chloride with amino
alcohols 2 under basic conditions afforded the corre-
sponding dihydroxyl amides 3a–c in 71–85% yields. The
crude reaction products 3 can be used for the next step
without any purification. The dihydroxyl amides 3 were
easily converted to chiral bis(2-oxazolinyl)xanthenes
(xabox) via mesylation of 3 followed by oxazoline ring
formation reactions in a one-pot procedure in high
yields.

The chiral environment of these new xabox ligands was
evaluated in nitrone 1,3-D.C. reaction by comparing
with our previous reaction in which pybox/Ni(II) com-
plexes were employed.7 Initially, we have chosen Ni(II)
as a central metal and briefly examined the chiral
shielding substituent effect on the oxazoline rings. It was
found that xabox-Bn 4c was the best ligand for the
nitrone 1,3-D.C. reaction (Scheme 2). Therefore, we
used xabox-Bn 4c for further optimization and the
results are summarized in Table 1. The metal profile
showed that the combination of xabox-Bn 4c and
Mn(II) and Mg(II) gave the highest enantioselectivities
(entries 1–3 and 6).8 These results indicate that the
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Scheme 1. Synthesis of chiral 4,6-bis(2-oxazolinyl)xanthene (xabox) ligands.

Scheme 2. Catalytic asymmetric 1,3-D.C. reaction of nitrones 5 and 6 with (S,S)-xabox-Bn/metal catalysts.

Table 1. (S,S)-xabox-Bn and Mn(II) and Mg(II) catalyzed 1,3-D.C. reaction of nitrones 5 and crotonoyl-oxazolidinone 6a

Entry Metal Nitrone Product Temp. (�C) Time (h) Yieldb (%) endo:exoc endo eed (%)

1 Cu(OTf)2 5a 7a 25 24 55 86:14 77

2 Ni(ClO4)2 Æ(H2O)6 5a 7a 25 21 87 85:15 80

3 Mn(ClO4)2Æ(H2O)6 5a 7a 25 21 85 92:8 93

4 Mn(ClO4)2Æ(H2O)6 5a 7a 10 48 85 96:4 95

5 Mn(ClO4)2Æ(H2O)6 5a 7a 0 72 78 96:4 93

6 Mg(ClO4)2Æ(H2O)6 5a 7a 25 12 96 >99:1 85

7 Mg(ClO4)2Æ(H2O)6 5a 7a 10 24 88 99:1 92

8 Mg(ClO4)2Æ(H2O)6 5a 7a 0 48 85 >99:1 92

9 Mn(ClO4)2Æ(H2O)6 5b 7b 25 12 90 96:4 94

10 Mn(ClO4)2Æ(H2O)6 5c 7c 25 12 95 97:3 95

11 Mn(ClO4)2Æ(H2O)6 5d 7d 25 24 81 98:2 91

a 5a (0.25mmol), 6 (0.25mmol), (S,S)-xabox-Bn 4c (0.025mmol), metal-perchlorate (0.025mmol), MS 4A (250mg), dichloromethane (1.5mL). The

catalyst was prepared under MS 4A at 40 �C for 4 h.
b Isolated yield.
c The ratios were determined by 1H NMR (300MHz).
d The ees were determined by chiral HPLC analysis (Daicel Chiralpak AD).

2122 S. Iwasa et al. / Tetrahedron Letters 45 (2004) 2121–2124
xabox ligand system seems to need a smaller ionic
diameter for the central metals to coordinate in the
cavity of the chiral environment compared to the pybox
system. Temperature effects were also examined for both
metals (entries 4, 6, 7, and 8). The nitrone 1,3-D.C.
reactions proceeded smoothly at 0–25 �C in the presence
of 10mol% of 4c and metals to afford the cycloadducts
in high yields as well as high stereoselectivities, though
the reaction time was prolonged. Encouraged by the
marked results for both the diastereo- and enantio-



Scheme 3. Complexation of xabox-i-Pr 3a and RhCl3(H2O)3.

Figure 1. Crystal structure of complex 8.
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selectivities, we then examined the optimized catalytic
conditions for catalytic asymmetric 1,3-D.C. reaction of
various nitrones with 3-alkenoyl oxazolidinones (entries
9–11). The cycloadducts were obtained with excellent
stereoselectivities for all of the nitrones.9

Furthermore, we examined the complexation of various
xabox ligands with several transition metals to investi-
gate the coordination type of the complexes and the
mechanism. Among them, RhCl3 and xabox-i-Pr 4a
underwent smooth complexation whose structures were
determined by X-ray analysis as a facial type complex-
ation (Scheme 3 and Fig. 1).10 However, it was sur-
prising that the complexation of Kanemasa�s DBFOX
and RhCl3 or Ru[(p-cymene)Cl2]2 failed to give complex
mixtures. The different topology of the ligand may have
given different stability to both ligands. We now believe
that the interaction between the xabox/metal complex
and the substrates might include a facial coordination
intermediate in the nitrone 1,3-D.C. reactions with
3-alkenoyl-2-oxazolidinone even though different metals
are used.

In conclusion, various xabox ligands having a xanthene
backbone were synthesized and were applied to catalytic
asymmetric 1,3-D.C. reactions of nitrones with 3-alke-
noyl oxazolidinone resulting in good to excellent stereo-
selectivities. Chiral xabox ligands can be used for other
catalytic asymmetric reactions as a new chiral inducer.
X-ray analysis of the complex shows a facial coordina-
tion of the xabox ligand to the metal, which may give
information on the mechanism of the 1,3-D.C. reaction
for the transition state.
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